

Financial Risk Management and Governance **Volatilities**

Prof. Hugues Pirotte

Definition

- The volatility of a variable is the standard deviation of its return with the return being expressed with continuous compounding
- The variance rate is the square of volatility
- Implied volatilities are the volatilities implied from option prices
- Normally days when markets are closed are ignored in volatility calculations (252 days)

 $\widehat{\sigma\sqrt{T}}$ standard deviation of $\ln(S(T)/S(0))$

When T is small

Solvay Brussels School Economics & Management

- » The continuously compounded return of a market variable is close to the percentage change
- » $\sigma\sqrt{T}$ \approx std. deviation of % change in market variable

Some thoughts on implied volatilities...

current estimation o reglied volats of the marker 1 + the desire" to be protected = the "how much 3 lestrical whate $=$ $\sqrt{20}$ arriver. Ca ve me a (finish tune univeloir the rolat. we would loke to make the hostswical volat more "voighted" to recent observations

The VIX index Inglish Uslat, Inder

From historical data...

■ We have

- » *n+1* price observations
- » Returns: i=1, 2..., n

$$
u_i = \ln\left(\frac{S_i}{S_{i-1}}\right)
$$

» The estimate of the standard deviation of u_i is given by

$$
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (u_i - \overline{u})^2}
$$

or

or

$$
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} u_i^2 - \frac{1}{n(n-1)} (\sum_{i=1}^{n} u_i)^2}
$$

 \rightarrow s is an estimate of $\sigma\sqrt{T}$

b Therefore:
$$
\hat{\sigma} = \frac{s}{\sqrt{T}}
$$
 with standard error $\approx \hat{\sigma}/\sqrt{2n}$

Are Daily Changes in Exchange Rates Normally Distributed?

Knowing this...

 What should you do if you observe fat tails in the tails of a market variable while the market assumes log-normality of prices?

The power law

H. Pirotte **8**

Formulation

» For many variables, when x is large (*K* and α are constants)

$$
Pr(v > x) = Kx^{-\alpha}
$$

- This seems to fit the behavior of the returns on many market variables better than the normal distribution This seems to fit the behavior of the ret
variables better than the normal distrib
The previous equation implies that
 $\ln [Pr(v > x)] = \ln K -$
This law will be used when we will be ta
Value Theory and Operational Risk.
- The previous equation implies that

$$
\ln[\Pr(v > x)] = \ln K - \alpha \ln x
$$

This law will be used when we will be talking about Extreme

Standard Approach to Estimating Volatility

- **•** Define σ_n as the volatility per day between day n -1 and day n , as estimated at end of day *n-*1
- Define S_i as the value of market variable at end of day *i*
- **Define** $u_i = \ln(S_i/S_{i-1})$

$$
\sigma_n^2 = \frac{1}{m-1} \sum_{i=1}^m (u_{n-i} - \overline{u})^2
$$

$$
\overline{u} = \frac{1}{m} \sum_{i=1}^m u_{n-i}
$$

Solvay Brussels School Economics & Management

Simplifications Usually Made in Risk Management

- Define u_i as $(S_i-S_{i-1})/S_{i-1}$
- **Assume that the mean value of** u_i **is zero**
- Replace *m-*1 by *m*

This gives

$$
\sigma_n^2 = \frac{1}{m} \sum_{i=1}^m u_{n-i}^2
$$

Weighting Scheme

Instead of assigning equal weights to the observations we can set

ARCH(m) model

I In an ARCH(m) model we also assign some weight to the long-run variance rate, *V^L* :

2 2 *V u* 1 1 where 1 *m n L i n i ⁱ m i i*

$$
AR(U(L))
$$
: $\sigma_{m}^{2} = \gamma V_{L} + (1-\gamma) W_{m-1}$

EWMA

 In an exponentially weighted moving average model, the weights assigned to the u^2 decline exponentially as we move back through time $\overbrace{\sigma_n^2 = \omega \sigma_{n-1}^2 + (1-\lambda)u_{n-1}^2}^{\text{max}}$ $-\lambda \frac{\sqrt{1-\lambda^2}}{2a_{n-1}^2+\lambda^2}$

 $\frac{1}{1} + (1 - \lambda) u_{n-1}^2$

 $\frac{1}{1-(1-\lambda)u_{n-1}^2}$

u

 $\widehat{(1 - \lambda)}$

 $-\frac{\mu_{n-1}}{2}$
= $(1-\lambda)\sum_{n=1}^{m} \lambda^{i-1} u_{n-i}^2 + \lambda^m \sigma_{n-m}^2$ λ)
 $\sum_{n=1}^{m} \lambda^{i-1} u_{n-i}^2 + \lambda^m \sigma_{n-m}^2$ $\sum_{n=1}^{\infty}$
(1 - λ) $\sum_{m=1}^{m} \lambda^{i-1} u^2 + \lambda^m \sigma^2$ *i* $=$ 1 the residual σ^2 for in the past. لحماها Advantages » Relatively little data needs^t to be stored

 $\frac{d^{2}}{2} = \lambda \sigma^{2} + (1 - \lambda)u^{2}$

 $\int_{n}^{2} = \left(\lambda \sigma_{n-1}^{2} + \left(1 - \lambda\right)u_{n}^{2}\right)$

- » We need only remember the current estimate of the variance rate and the most recent observation on the market variable
- » Tracks volatility changes

This leads to

Solvay Brussels School Economics & Management

» RiskMetrics uses λ = 0.94 for daily volatility forecasting

» The long-run variance rate is 0.0002 so that

GARCH (1,1)

- Example 2
	- **»** Suppose that the current estimate of the volatility $\left(s\right)$ 1.6% per day and the most recent percentage change in the market variable is 1%
	- » The new variance rate is

 $0.000002 + 0.13 \times 0.0001 + 0.86 \times 0.000256 + 0.00023336$

The new volatility is 1.53% per day

GARCH (p,q) $\sigma_n^2 = \omega + \sum \alpha_i u_{n-i}^2 + \sum \beta_j \sigma_i$ *j* $\sum_{i=1}^{p} \alpha_i u_{n-i}^2 + \sum_{j=1}^{q}$ $\frac{2}{n} = \omega + \sum \alpha_i u_{n-i}^2 + \sum \beta_j \sigma_{n-j}^2$ 1 1 $\alpha=\omega+\sum\alpha_{i}u_{n-i}^{2}+\sum\beta_{j}\sigma_{n-i}^{2}$ $=1$ $j=$ $\sum \alpha_i^{} u_{n-i}^2 + \sum \beta_j^{} \sigma_{n-i}^2$

Solvay Brussels School Economics & Management

Others

- **We can design GARCH models so that the weight given to** u_i^2 depends on whether u_i is positive or negative
- We do not have to assume that the conditional distribution is normal

Variance targeting

- One way of implementing GARCH(1,1) that increases stability is by using variance targeting
- We set the long-run average volatility equal to the sample variance
- Only two other parameters then have to be estimated

Maximum likelihood

- In maximum likelihood methods we choose parameters that maximize the likelihood of the observations occurring
- Example 1
	- » We observe that a certain event happens one time in ten trials. What is our estimate of the proportion of the time, *p*, that it happens?
	- **»** The probability of the outcome is $p(1-p)^9$
	- » We maximize this to obtain a maximum likelihood estimate: *p=*0.1 (differentiate with respect to *p* and set result equal to 0)
- Example 2
	- » Estimate the variance of observations from a normal distribution with mean zero 1 $\int -u_i^2$ Maximize: $\left| \right| \left| \frac{1}{\sqrt{2}} \exp \left| \frac{1}{\sqrt{2}} \right| \right|$ *m* u_i^{\prime} rvations from a normal dis
 $\left[\frac{1}{\sqrt{2\pi}}\exp\left(\frac{-u_i^2}{\sqrt{2\pi}}\right)\right]$ rvations from a normal dis
 $\left[\frac{1}{\sqrt{2\pi v}}\exp\left(\frac{-u_i^2}{2v}\right)\right]$ \prod

Maximize **c. EXECUTE:**
$$
\prod_{i=1}^{m} \left[\frac{1}{\sqrt{2\pi v}} \exp\left(\frac{-u_i^2}{2v}\right) \right]
$$

or:
$$
\sum_{i=1}^{m} \left[-\ln(v) - \frac{u_i^2}{v} \right] = -m \ln(v) - \sum_{i=1}^{m} \left[\frac{u_i^2}{v} \right]
$$

This gives:
$$
v = \frac{1}{m} \sum_{i=1}^{m} u_i^2
$$

1

Application to GARCH(1,1)

We choose parameters that maximize

