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Definition 
 The volatility of a variable is the standard deviation of its return 

with the return being expressed with continuous compounding 

 The variance rate is the square of volatility 

 Implied volatilities are the volatilities implied from option prices 

 Normally days  when markets are closed are ignored in volatility 
calculations (252 days) 

 

 

 When T is small 
» The continuously compounded return of a market variable is close to the 

percentage change 

»   

  standard deviation of ln ( ) (0)T S T S 

   std. deviation of % change in market variableT 
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Some thoughts on implied volatilities... 
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The VIX index 
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From historical data... 
 We have 

» n+1 price observations 

» Returns: i=1, 2..., n 

 

 

» The estimate of the standard deviation of ui is given by 
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Are Daily Changes in Exchange Rates Normally Distributed?  

 Knowing this... 

 

 

 

 

 

 

 

 What should you do if you observe fat tails in the tails of a market 
variable while the market assumes log-normality of prices? 

 Statistical jargon: 
» Leptokurtic 
» Platykurtic 
» Mesokurtic 
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Real World (%) Normal Model (%) 

>1 SD 25.04 31.73 

>2SD 5.27 4.55 

>3SD 1.34 0.27 

>4SD 0.29 0.01 

>5SD 0.08 0.00 

>6SD 0.03 0.00 



The power law 
 Formulation 

» For many variables, when x is large (K and  are constants) 

 

 

 This seems to fit the behavior of the returns on many market 
variables better than the normal distribution 

 

 The previous equation implies that 

 

 

 

 This law will be used when we will be talking about Extreme 
Value Theory and Operational Risk. 

Pr( )  v x Kx  

 ln Pr( )   ln lnv x K x  
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Standard Approach to Estimating Volatility 
 Define n as the volatility per day between day n-1 and day n, as 

estimated at end of day n-1 

 Define Si as the value of market variable at end of day i 

 Define ui= ln(Si/Si-1) 
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Simplifications Usually Made in Risk Management 

 Define ui as (Si-Si-1)/Si-1 

 Assume that the mean value of ui is zero 

 Replace m-1 by m 

 

This gives 
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Weighting Scheme 
 Instead of assigning equal weights to the observations we can set 
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ARCH(m) model 
 In an ARCH(m) model we also assign some weight to the long-run 

variance rate, VL: 
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EWMA 
 In an exponentially weighted moving average model, the weights 

assigned to the u2 decline exponentially as we move back 
through time 

 This leads to 

 

 

 Advantages 
» Relatively little data needs to be stored 

» We need only remember the current estimate of the variance rate and the 
most recent observation on the market variable 

» Tracks volatility changes 

» RiskMetrics uses l = 0.94 for daily volatility forecasting 
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GARCH (1,1) 
 In GARCH (1,1) we assign some weight to the long-run average variance 

rate 

 

 

 Since weights must sum to 1 

    b 1 

 

 Setting w  V   the GARCH (1,1) model is 

 and 

 

 Example 
» Suppose 
» The long-run variance rate is 0.0002 so that 

the long-run volatility per day is 1.4% 
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GARCH (1,1) 
 Example 2 

» Suppose that the current estimate of the volatility is 1.6% per day and the 
most recent percentage change in the market variable is 1%. 

» The new variance rate is 

 

 The new volatility is 1.53% per day 

0 000002 0 13 0 0001 0 86 0 000256 0 00023336. . . . . .    
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GARCH (p,q) 
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Others 
 We can design GARCH models so that the weight given to ui

2 
depends on whether ui is positive or negative 

 We do not have to assume that the conditional distribution is 
normal 
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Variance targeting 
 One way of implementing GARCH(1,1) that increases stability is 

by using variance targeting 

 We set the long-run average volatility equal to the sample 
variance 

 Only two other parameters then have to be estimated 
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Maximum likelihood 
 In maximum likelihood methods we choose parameters that 

maximize the likelihood of the observations occurring 

 Example 1 
» We observe that a certain event happens one time in ten trials. What is 

our estimate of the proportion of the time, p, that it happens? 

» The probability of the outcome is 

» We maximize this to obtain a maximum likelihood estimate: p=0.1 
(differentiate with respect to p and set result equal to 0) 

 Example 2 
» Estimate the variance of observations from a normal distribution with 

mean zero 
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Application to GARCH(1,1) 
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