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Definition
= The volatility of a variable is the standard deviation of its return
with the return being expressed with continuous compounding

= The variance rate is the square of volatility
= |Implied volatilities are the volatilities implied from option prices

= Normally days when markets are closed are ignored in volatility

calculations (252 days) )
T _\2
o«T F standard deviation of In(S(T)/S(0)) i{_ ?(/“ ’r )
= When Tis small e Aaws LAl

» The continuously compounded return of a market variable is close to the
percentage change

» oT =~ std. deviation of % change in market variable
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Some thoughts on implied volatilities...
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The VIX index

Week of Aug 28, 2006 : - ~VIX 11.96
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From historical data...

= We have
» n+1 price observations
» Returns:i=1, 2..., n

» The estimate of the standard deviation of u; is given by

» sisan estimate of o T

» Therefore: o= % with standard error =~ &/ J2n

H. Pirotte m
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Are Daily Changes in Exchange Rates Normally Distributed?

= Knowing this...

Real World (%) | Normal Model (%)
>1 SD 25.04 31.73
>2SD 5.27 4.55
>3SD 1.34 0.27
>4SD 0.29 0.01
>5SD 0.08 0.00
>6SD 0.03 0.00

* What should you do if you observe fat tails in the tails of a market

q

variable while the market assumes log-normality of prices? : u
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i, T : “""’W
i = M m’\&q
» Mesokurtic s
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The power law b{

Formulation
For many variables, when x is large (K and o are constants)

Pr(v>x) = Kx*

This seems to fit the behavior of the returns on many market
variables better than the normal distribution

The previous equation implies that

In[Pr(v>x)| = INnK—-alInx

This law will be used when we will be talking about Extreme
Value Theory and Operational Risk.
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Standard Approach to Estimating Volatility

Define o, as the volatility per day between day n-1 and day n, as
estimated at end of day n-1

Define S; as the value of market variable at end of day |
DEfine Ui= |ﬂ(Si/Si_1)
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Simplifications Usually Made in Risk Management
= Deﬁne Ui asS (Si-Si-l)/Si-l

= Assume that the mean value of u; is zero

= Replace m-1 by m

—

1 o
L] L] 2 _ 2
This gives |o; = - E U
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Weighting Scheme

" |nstead of assigning equal weights to the observations we can set

2 _\m 2
On = Zizlaiu”_i

where A

8 T ab
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ARCH(m) model
* |n an ARCH(m) model we also assign some weight to the long-run

variance rate, V
2
(= @T\ o
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EWMA

= |n an exponentially weighted moving average model, the weights
assigned to the u? decline exponentially as we move back

through time A CR\ DAL
N | o

] 1 2
This leads to o2 951@%21

— (1 A’)Z ﬂ,l 1 2 mo_ﬁ_m
m:! QA \w § \ F
- Advantage Mi WWG é,w.m Pl

[y
» Relatively little data needs'to be stored
» We need only remember the current estimate of the variance rate and the
most recent observation on the market variable

» Tracks volatility changes

» RiskMetrics uses A = 0.94 for daily volatility forecasting%

_0 0
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GARCH (1,I)— bty

" |n GARCH (1,1) we assign some weight to the long-run average variance

rate >

O, 7VL+au§—1+IBO'nZ—1
LT foad, MW s - canalow —

AsSiiAme 'C:q,m\m ANMSOAAA,
Since weights must sum tcf)\l T 4[

y+a+ =1

GARCH (1,1) model is 0, =@+au,, +fao,,

um 2 =\

= Exampl oo o o A-o—(5
Xampleé 52 _0000002+013u?, + 08652,
» Suppose
» The long-run variance rate is 0.0002 so that
the long-run volatility per day is 1.4%
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GARCH (1,1)

= Example 2
» Suppose that the current estimate of the volatility {s @&er day and the

most recent percentage change in the s 1%
» The new variance rate is -7
o.ooooo 0.0001 0.000256 90.00023336

The new volatility is 1.53% per day




. Solvay Brussels School H. Pirotte
" A Economics & Management
GARCH (p,q)
P q

2 2 2
O :a)_l_zaiun—i +Zﬁj0n—j
j=1
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Others

= We can design GARCH models so that the weight given to u;?
depends on whether u; is positive or negative

= We do not have to assume that the conditional distribution is
normal
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Variance targeting

= One way of implementing GARCH(1,1) that increases stability is
by using variance targeting

= We set the long-run average volatility equal to the sample
variance

= Only two other parameters then have to be estimated
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Maximum likelihood

In maximum likelihood methods we choose parameters that
maximize the likelihood of the observations occurring

Example 1

We observe that a certain event happens one time in ten trials. What is
our estimate of the proportion of the time, p, that it happens?
The probability of the outcome is p(1- p)’

We maximize this to obtain a maximum likelihood estimate: p=0.1
(differentiate with respect to p and set result equal to 0)

Example 2
Estimate the variance of observations from a normal distribution with
mean zero . m 1 —u?
Maximize: exp| —-
HL/Z%V ( 2V ﬂ

or: Zm:{— In(v) —li/—'z} =-min(v) —Zml‘[%}

This gives: v = iZu.2
m
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Application to GARCH(1,1)

n 2
= We choose parameters that maximize Z{— In(v.) —lj/—'}
i=1 i



