

Financial Risk Management and Governance Volatilities

Prof. Hugues Pirotte

Definition

- The volatility of a variable is the standard deviation of its return with the return being expressed with continuous compounding
- The variance rate is the square of volatility
- Implied volatilities are the volatilities implied from option prices
- Normally days when markets are closed are ignored in volatility calculations (252 days)

 $(\sigma\sqrt{T})$ standard deviation of $\ln(S(T)/S(0))$ $\int \frac{1}{2} (\mu x)$

When T is small

Solvay Brussels School Economics & Management

- » The continuously compounded return of a market variable is close to the percentage change
- » $\sigma\sqrt{T} \approx$ std. deviation of % change in market variable

Some thoughts on implied volatilities...

(Triang a current estimatrio righted volate (La desenced from oftroir prices (ATM) of the market recent combines + the desire to be protected = the "how much engensive" in the woncemance 3 listrical what = when are more . a ve voe a finid time window & me may "stide" it to recalculate the relat we would lake to make the hatraical relat more "weighted " to recent stemations

The VIX index Ingerial User, Inder

From historical data...

We have

- » *n*+1 price observations
- » Returns: i=1, 2..., n

$$u_i = \ln\left(\frac{S_i}{S_{i-1}}\right)$$

» The estimate of the standard deviation of u_i is given by

$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} \left(u_i - \overline{u}\right)^2}$$

or

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} u_i^2 - \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} u_i \right)^2}$$

» s is an estimate of $\sigma\sqrt{T}$

» Therefore:
$$\hat{\sigma} = \frac{s}{\sqrt{T}}$$
 with standard error $\approx \hat{\sigma}/\sqrt{2n}$

Are Daily Changes in Exchange Rates Normally Distributed?

Knowing this...

	Real World (%)	Normal Model (%)
>1 SD	25.04	31.73
>2SD	5.27	4.55
>3SD	1.34	0.27
>4SD	0.29	0.01
>5SD	0.08	0.00
>6SD	0.03	0.00

What should you do if you observe fat tails in the tails of a market variable while the market assumes log-normality of prices?

Name

- Statistical jargon:
 - » (Leptokurtic)
 - » Platykurtic
 - » Mesokurtic

The power law

Formulation

» For many variables, when x is large (K and α are constants)

$$\Pr(v > x) = Kx^{-\alpha}$$

- This seems to fit the behavior of the returns on many market variables better than the normal distribution
- The previous equation implies that

 $\ln[\Pr(v > x)] = \ln K - \alpha \ln x$

 This law will be used when we will be talking about Extreme Value Theory and Operational Risk.

Standard Approach to Estimating Volatility

- Define σ_n as the volatility per day between day n-1 and day n, as estimated at end of day n-1
- Define S_i as the value of market variable at end of day i
- Define $u_i = \ln(S_i/S_{i-1})$

$$\sigma_n^2 = \frac{1}{m-1} \sum_{i=1}^m (u_{n-i} - \overline{u})^2$$
$$\overline{u} = \frac{1}{m} \sum_{i=1}^m u_{n-i}$$

Solvay Brussels School Economics & Management

Simplifications Usually Made in Risk Management

- Define u_i as $(S_i S_{i-1})/S_{i-1}$
- Assume that the mean value of u_i is zero
- Replace *m*-1 by *m*

This gives

$$\sigma_n^2 = \frac{1}{m} \sum_{i=1}^m u_{n-i}^2$$

Weighting Scheme

Instead of assigning equal weights to the observations we can set

ARCH(m) model

- In an ARCH(m) model we also assign some weight to the long-run variance rate, V_L : $\sigma_n^2 = \gamma V_L + \sum_{i=1}^m \alpha_i u_{n-i}^2$ long-term trand
 - where $\gamma + \sum_{i=1}^{m} \alpha_i = 1$

$$AR(H(1)): G_{m}^{2} = J.V_{L} + (1-J).u_{m-1}^{2}$$

EWMA

In an exponentially weighted moving average model, the weights assigned to the u^2 decline exponentially as we move back through time $\lambda \cdot \sigma_{m-2}^2 + (\lambda - \lambda) \cdot \omega_{m-2}^2$

= $(1-\lambda)\sum_{i=1}^{m}\lambda^{i-1}u_{n-i}^{2} + \lambda^{m}\sigma_{n-m}^{2}$ Advantages metric unit of the residual σ^{2} for in the part.

 σ_n^2

- » Relatively little data needs to be stored
- » We need only remember the current estimate of the variance rate and the most recent observation on the market variable
- » Tracks volatility changes

Solvay Brussels School Economics & Management

This leads to

» RiskMetrics uses λ = 0.94 for daily volatility forecasting

The long-run variance rate is 0.0002 so that **>>** the long-run volatility per day is 1.4%

GARCH (1,1)

- Example 2
 - » Suppose that the current estimate of the volatility is 1.6% per day and the most recent percentage change in the market variable is 1%
 - » The new variance rate is

0.000002 + 0.13 × 0.0001 + 0.86 × 0.000256 = 0.00023336

The new volatility is 1.53% per day

GARCH (p,q) $\sigma_n^2 = \omega + \sum_{i=1}^p \alpha_i u_{n-i}^2 + \sum_{j=1}^q \beta_j \sigma_{n-j}^2$

Solvay Brussels School Economics & Management

Others

- We can design GARCH models so that the weight given to u_i² depends on whether u_i is positive or negative
- We do not have to assume that the conditional distribution is normal

Variance targeting

- One way of implementing GARCH(1,1) that increases stability is by using variance targeting
- We set the long-run average volatility equal to the sample variance
- Only two other parameters then have to be estimated

Maximum likelihood

- In maximum likelihood methods we choose parameters that maximize the likelihood of the observations occurring
- Example 1
 - » We observe that a certain event happens one time in ten trials. What is our estimate of the proportion of the time, *p*, that it happens?
 - » The probability of the outcome is $p(1-p)^9$
 - We maximize this to obtain a maximum likelihood estimate: p=0.1
 (differentiate with respect to p and set result equal to 0)
- Example 2
 - » Estimate the variance of observations from a normal distribution with mean zero Maximize: $\prod_{i=1}^{m} \left[\frac{1}{1-\frac{1}{2}} \exp\left(\frac{-u_{i}^{2}}{2}\right) \right]$

With Million III
$$\left[\frac{1}{\sqrt{2\pi v}} \exp\left(\frac{1}{2v}\right) \right]$$

or: $\sum_{i=1}^{m} \left[-\ln(v) - \frac{u_i^2}{v} \right] = -m\ln(v) - \sum_{i=1}^{m} \left[\frac{u_i^2}{v} \right]$
This gives: $v = \frac{1}{m} \sum_{i=1}^{m} u_i^2$

Application to GARCH(1,1)

We choose parameters that maximize $\sum_{i=1}^{n} \left| -\ln(v_i) - \frac{u_i^2}{v_i} \right|$

